LATE-STAGE MICROSOMAL OXIDATION REDUCES DRUG-DRUG INTERACTION AND IDENTIFIES PHOSPHODIESTERASE 2A INHIBITOR PF-06815189

ACS Med. Chem. Lett. 2018, 9, 68–72

February 17th 2018

LATE STAGE C-H FUNCTIONALIZATION IN DRUG DISCOVERY

Cernak et. al., Chem. Soc. Rev., 2016, 45, 546--576

2/17/2018

LATE-STAGE LEAD DIVERSIFICATION MICROSOMAL SCREEN

Stepan et. al., ACS Med. Chem. Lett. 2018, 9, 68-72

Page 4 of 20

BIOSYNTHESIS OF FLUORINATED ANALOGS OF DRUGS USING HUMAN CYTOCHROME P450 ENZYMESFOLLOWED BY DEOXYFLUORINATION

Obach et. al., Drug Metab Dispos 44:634–646

BIOSYNTHESIS OF FLUORINATED ANALOGS CONTD.

6

Obach et. al., Drug Metab Dispos 44:634–646

$M {\rm ETABOLIC} \ S {\rm TABILITY}$

Comparison of metabolic lability in recombinant human P450 enzymes between drugs and their fluorinated analogs

Compound	Enzyme	CL _{int} (µl/min		
		Parent Drug	Fluorinated Analog	Stability Factor
Midazolam	CYP3A4	23.4 (0.7)	17.7 (0.7)	1.3
Midazolam	CYP3A5	45.9 (1.0)	15.3 (0.5)	3.0
Ramelteon	CYP1A2	27.3 (6.4)	28.8 (5.1)	0.95
Celecoxib	CYP2C9	3.0 (0.4)	0.78 (0.15)	3.8
Risperidone	CYP2D6	5.6 (0.3)	0.34 (0.37)	16

Values in parentheses are standard errors.

Obach et. al., Drug Metab Dispos 44:634-646

PHOSPHODIESTERASES (PDES)

Azevedo et. al., Endocrine Reviews, 2014, 35(2):195–233

6/23/2018

DESIGN STRATEGY TO PDE2 INHIBITOR 1

Stepan et. al., ACS Med. Chem. Lett. 2018, 9, 68–72

6/23/2018

2/17/2018

MOLECULAR DOCKING

Stepan et. al., ACS Med. Chem. Lett. 2018, 9, 68–72
Helal, J. Med. Chem. 2017, 60, 5673–5698
Zhu et. Al., J. Am. Chem. Soc. 2013, 135, 11708–11711

6/23/2018

DIHEDRAL ANGLE CALCULATION FOR 1

Figure S-1. Relative energies from dihedral scan with 1 and its des-methyl analog cmpd Z.

Stepan et. al., ACS Med. Chem. Lett. 2018, 9, 68-72

Page 11 of 20

6/23/2018

11

2/17/2018

UHPLC-UV CHROMATOGRAMS OF COMPOUND 1 INCUBATION EXTRACTS FROM EXPRESSED HUMAN P450 ENZYMES

2/17/2018

Shikha @

Wipf Group

UHPLC-UV CHROMATOGRAMS OF COMPOUND 1 INCUBATION EXTRACTS FROM LIVER MICROSOMES OF VARIOUS SPECIES

Stepan et. al., ACS Med. Chem. Lett. 2018, 9, 68-72

Shikha Chauhan @ Wipf Group

$Metabolism \ of \ 1 \ in \ Monkey \ Liver \ Microsomes$

Stepan et. al., ACS Med. Chem. Lett. 2018, 9, 68-72

10

14

2/17/2018

IN VITRO PDE2 POTENCY AND ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION (ADME) CHARACTERISTICS OF ANALOGUES OBTAINED THROUGH C-H OXIDATION

2 (PF-06815189): R₁ = OH, R₂ = H **5**: R₁ = H, R₂ = OH **6**: R₁ = R₂ = OH

	2	5	6
clogP/TPSA ^a	2.0/101	2.0/101	0.7/121
PDE2 IC ₅₀ $(nM)^b$	0.4 (5)	6.9 (4)	7.8 (4)
HLM/HHEP <i>CL</i> _{int,s} ^c (mL/min/kg)	<8.0/<0.36	<8.0/-	<9.2/-
RRCK P_{app}^{d} (×10 ⁻⁶ cm/s)	8	17	5

^{*a*}Topological polar surface area. ^{*b*}Number of replicates in parentheses. ^{*c*}Intrinsic scaled clearance. ^{*d*}Apparent passive permeability in the Ralph Russ Canine Kidney cell line.¹⁹

15

2/17/2018

Shikha @ Wipf Group

Stepan et. al., ACS Med. Chem. Lett. 2018, 9, 68-72

Synthesis of 1 and Biocatalytic Oxidation to 2

Reagents and conditions: (a) Br_2 , DMF, 0–25 °C, 65%; (b) $POCl_3$, NEt_3 , toluene, reflux; (c) pyrrolidine, NEt_3 , CH_2Cl_2 , 0–25 °C, 77%, two steps; (d) $Pd(dppf)Cl_2 \cdot CH_2Cl_2$, Na2CO3, dioxane/H₂O, 110 °C, 62%; (e) 1 M HCl, THF, reflux, 86%; (f) S. aerocolonigenes ATCC 39243 in Iowa medium, DMSO, 30 °C, 7 days, 20%.

Stepan et. al., ACS Med. Chem. Lett. 2018, 9, 68-72

6/23/2018

16

2/17/2018

Shikha Chauhan @ Wipf Group

Synthesis of candidtate 2

OEt

EtO

2

HN

h)

Stepan et. al., ACS Med. Chem. Lett. 2018, 9, 68-72

11

a)

EtO

OH

N-N

 H_2N

15

12

CF3

OEt

CF₃

Br 13

d), e), f)

14

OEt

N-N

17

NH₂CI

Ν

ΗN

OEt b)

g)

c)

IN-VIVO ACTIVITY

≻Administration of compound 2 significantly reduced histamine-induced extravasation of Evan's Blue dye in guinea pig skin (*p < 0.05, **p <0.01, ***p < 0.005).</p>

18

2/17/2018

Shikha @ Wipf Group

Stepan et. al., ACS Med. Chem. Lett. 2018, 9, 68-72

$PRECLINICAL \ PHARMACOKINETICS \ OF \ COMPOUND \ 2$

	CL _p ^b (mL/min/kg)	V _{ss} ^c (L/kg)	$\begin{pmatrix}t_{1/2}\\(\mathrm{h})\end{pmatrix}^d$	%F ^e	% renal clearance ^f
rat	28	1.5	1.2	50	22
dog	1.3	0.4	4.8	79	48
NHP	4.0	0.8	3.6	61	26

 ${}^{a}N = 2$ animals/dose in all studies. ${}^{b}Observed$ plasma clearance. ${}^{c}Steady$ -state volume of distribution. ${}^{d}Half$ -life. ${}^{e}Bioavailability.$ ${}^{f}Percent$ dose recovered in urine (0–24 h).

Stepan et. al., ACS Med. Chem. Lett. 2018, 9, 68-72

Page 19 of 20

6/23/2018

CONCLUSION

- Late-stage functionalization strategy using microsomal oxidation to the PDE2 inhibitor approach improved the drug-likeness of the early **lead 1** (LipE = 5.9 and LiMetE = 1.9) and allowed rapid identification of the potential clinical **candidate 2** (LipE = 7.4 and LipMetE = 2.4)
- A daily dose of only 1.3 mg is required to achieve an average PDE2 IC_{90} coverage over 24 h, reflecting the exquisite drug-like attributes of 2
- Hydroxylation introduced the desired amount of renal clearance, minimizing the risk for clinical victim drug-drug interactions.
- Study highlights the impact of late-stage diversification technologies can have on drug discovery